Neural networks as smooth priors for inverse problems for PDEs
نویسندگان
چکیده
In this paper we discuss the potential of using artificial neural networks as smooth priors in classical methods for inverse problems PDEs. Exploring that are global and function approximators, idea is could act attractive coefficients to be estimated from noisy data. We illustrate capabilities context Poisson equation show network approach robustness with respect noisy, incomplete data mesh geometry.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Artificial Neural Networks for the Solution of Inverse Problems
In this work we present a variational formulation for neural networks. Within this formulation, the learning problem for the multilayer perceptron lies in terms of finding a function which is an extremal for some functional. As we will see, a variational formulation for neural networks provides a direct method for the solution of general variational problems, in any dimension and up to any degr...
متن کاملApplications of Topological Derivatives and Neural Networks for Inverse Problems
Numerical method of identification for small circular openings in the domain of integration of an elliptic equation is presented. The method combines the asymptotic analysis of PDE’s with an application of neural networks. The asymptotic analysis is performed in singularly perturbed geometrical domains with the imperfections in form of small voids and results in the form of the so-called topolo...
متن کاملPiecewise smooth models for electromagnetic inverse problems
This paper presents a new method for constructing onedimensional electrical conductivity models of the Earth from surface electromagnetic measurements. The construction of these models is a nonlinear inverse problem that can be approached by linearization techniques combined with iterative methods and Tikhonov’s regularization. The standard application of these techniques usually leads to smoot...
متن کاملStochastic Algorithms for Inverse Problems Involving PDEs and many Measurements
Inverse problems involving systems of partial differential equations (PDEs) can be very expensive to solve numerically. This is so especially when many experiments, involving different combinations of sources and receivers, are employed in order to obtain reconstructions of acceptable quality. The mere evaluation of a misfit function (the distance between predicted and observed data) often requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of computational mathematics and data science
سال: 2021
ISSN: ['2772-4158']
DOI: https://doi.org/10.1016/j.jcmds.2021.100008